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Abstract
Earthquakes can lead to widespread damage to the built environment, affecting many residential 
buildings and expose their residents to potentially severe and long-lasting physical and financial 
stress. While emergency response actions are still ongoing in the aftermath of such an event, 
public officials already have to take first decisions that will shape the reconstruction process 
and affect long-term societal consequences. Apart from the intense time pressure, this decision 
environment is characterized by the sparsity of available information on the amount and the 
spatial distribution of earthquake-triggered damage. 
In this situation, regional earthquake risk models provide valuable first rapid impact predictions 
that are, however, typically associated with large uncertainties. Conversely, the amount and the 
spatial coverage of event-specific impact data increases during post-earthquake response and 
recovery. By leveraging probabilistic machine learning tools, the framework presented in this 
study makes it possible to benefit from the continuous data inflow to dynamically update the 
initial regional earthquake risk predictions and to constrain the associated model uncertainties. 
Whereas it might take several weeks until a first rapid visual safety screening is completed for 
all buildings in the earthquake-affected region, this study shows how data from only the first 
few screened buildings can substantially increase the quality of information available to decision-
makers. This enables not only to predict outcomes of an ongoing building safety screening process, 
for example, predict the number of uninhabitable buildings, but also to constrain prior estimates 
for subsequent processes of the recovery phase, such as detailed damage assessments and 
reconstruction cost and time estimation. The presented framework is applied to a case-study 
region with 34000 residential buildings providing home to 500000 people that is subjected to a 
fictitious earthquake scenario.

Key words:  Dynamic post-earthquake damage assessment, Regional earthquake-risk models, 
Housing resilience, Gaussian Process classification
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1 Introduction

Earthquakes strike at random locations with unpredictable magnitude and spectral 
content, but with high destructive potential. Varying seismic design levels and material 
degradation of existing buildings add uncertainty to the damage and, by extension, loss 
caused by earthquake events. In recent years, the focus of community earthquake prepar-
edness has shifted towards resilience and thus, includes time requirements for assessing 
and repairing the built environment. Post-earthquake inspections serve as a starting point 
for reoccupation and functional recovery of housing, as well as numerous immediate re-
sponse actions, including temporary housing and structural stabilization measures. Visual 
inspection of vast building stocks is slowed down by post-earthquake circumstances and, 
possibly, by limited resources (i.e. inspectors). However, good decision making towards 
recovery planning requires rapid availability of reliable data on damage and loss.
Currently, tools for rapid loss assessment (RLA) provide first rapid, yet uncertain, infor-
mation by combining exposure and vulnerability models with ground-motion estimates 
that are possibly constrained by seismic recordings [1–3]. Although RLA methodolo-
gies are well established and offer crucial initial information maps, their global scope 
and focus on the immediate aftermath prohibit a dynamic adaptation to new localized 
information that helps reducing the, typically large, uncertainties. With such informa-
tion becoming increasingly available in the days following an earthquake, uncertainties 
pertaining to both ground shaking and structural behavior can be reduced. This paper 
presents a proposal for continuous dynamic updating of the post-earthquake risk as-
sessment in a restricted geographic area by leveraging machine-learning tools.
Machine-learning techniques have been tested in regional seismic risk prediction, based 
on the assumption that a subset of buildings is representative of a much larger build-
ing stock [4]. Acknowledging the need for centralized information on building damage, 
Loos et al. proposed a geospatial data integration framework using a kriging regression 
model to find correlations between observed damage and other secondary parameters 
[5]. Kovačević et al. used random forests to classify buildings in damage states based 
on inspection results for a subset of buildings [6]. However, as most techniques are 
entirely data-driven, they require large amounts of inspected buildings or careful prior-
itization of inspections to arrive at stable predictions. 
We propose Gaussian processes to fuse inspection data with an underlying pre-event 
earthquake risk model to update it and reduce the underlying uncertainties. Pozzi and 
Wang proposed a similar method for the purpose of predicting the failure probability of 
individual components in spatially distributed infrastructure systems [7]. The proposal 
presented in this paper focuses on aggregated statistics for a diverse building stock. The 
paper starts with a general description of Gaussian processes for classification and its 
application to earthquake-induced loss of housing capacity. The methodology is applied 
to a simulated case study in the greater Zurich area showing the potential for a rapid 
reduction in uncertainty ranges of inhabitable buildings.
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2 Method

The proposed method employs an ex-ante regional earthquake risk model to provide 
immediate predictions of the consequences inflicted by an event. With the information 
that eventually becomes available within the first few days following an earthquake 
event, we continuously update the prior earthquake risk model, using Gaussian process 
classification, to provide refined consequence predictions. First, Gaussian processes for 
classification are introduced before their applicability to post-earthquake habitability is 
discussed. 

2.1 Gaussian processes for classification

Gaussian Processes (GPs) provide non-parametric distributions over functions that can 
be used in probabilistic modelling for supervised learning tasks, including regression 
and classification [8]. Consider an available training set D = {(xi, yi)|i=1, ..., n} = (X, y), 
where matrix X = [x1, ..., xn] collects the n input points from domain X and the vector y 
collects the corresponding observed class labels yi ∈ {-1, 1}, with the task to predict the 
class membership probability for a set of m test points X* = [x*,1, ..., x*m]. A latent function 
f is employed, and conditional on f, the class labels are assumed to be Bernoulli-distrib-
uted independent random variables p(yi|fi) = Φ (yifi), where fi = f(xi) and Φ(·) is the stand-
ard normal cumulative distribution function (cdf); and, f = [f1, ..., fn] summarizes the la-
tent function values for inputs, X.  classification imposes a Gaussian prior on the 
latent function

 (1)

where m(x) and k(x,x’) are the mean and positive definite covariance function of a GP. 
Any finite subset of the random variables, whose collection forms a GP, follows a joint 
multivariate Gaussian distribution. Thus, a random variable f(x) is associated to every x 
∈ X, such that for any finite set of inputs X ∈ X, the joint distribution (f|X) follows a mul-
tivariate normal distribution with mean vector m0 = [m(x1), ..., m(xn)]’ and covariance ma-
trix ∑ with entries ∑ij =k (xi, yi). Applying Bayes’ rule, the posterior distribution over the 
latent values f  can be expressed as

 (2)

where Z = p (f|X) = ∫p (y|f) p(f|X)df is the marginal likelihood. For predictions, we then 
marginalize latent variables over the training set to evaluate the posterior of the latent 
function at the test points, X*.

 (3)
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where p(f*|f,X*,X) is the conditional prior and follows a multivariate normal distribution. 
Then, by averaging out the test set latent variables one obtains the predictive class 
membership probability p(y* = 1|X*,y,X). Because of the non-Gaussian likelihood, the ex-
pressions in Eq. 2 and 3 require sampling algorithms (i.e. Markov-Chain Monte-Carlo). 
An alternative and computationally more efficient option consists in employing Gauss-
ian approximations to the posterior q(f|y,X) ≈ p(f|,y,X). Hence, expectation propagation 
(EP) approximates the Bernoulli likelihood p(yi|fi) = Φ (yifi) iteratively by using a local like-
lihood in the form of an un-normalized Gaussian function in the latent variable fi. Thus, 
the approximate posterior predictive distribution q(f*|X*,y,X) is expressed as a multivari-
ate normal distribution. An interested reader is referred to Rasmussen and Williams [8] 
for further details on EP and similar approximate algorithms. 

2.2 Link to regional earthquake risk models

Existing regional earthquake risk models vary in multiple aspects, not only because 
they are tailored to specific regions and the information available, but they also aim 
to quantify different quantities of interest. However, most models share two common 
assumptions: (1) damage to buildings, conditioned on one or multiple ground-motion 
intensity measures, is independent and (2) the logarithm of ground-motion intensity 
measures from different sites follow a multivariate normal distribution. The apparent 
similarity with GP classification motivates the use of ground-motion intensity meas-
ures as “latent functions”, which will be gradually updated based on new information. 
The proposed framework is intended for post-earthquake application and therefore, is 
applied to the consequences inflicted by a scenario earthquake. For a building stock of 
size n, the quantity of interest is the number of buildings that are uninhabitable after an 
earthquake event NUI = n - ∑i

nHi, where random variable Hi ∈ {0,1} denotes the habitabil-
ity status of building i and Hi = 1 indicates that this building remained habitable.
Denote by fi the logarithm of peak ground acceleration (PGA) at site xi. Similar to con-
ventional fragility functions, hk denotes the logarithm of the median PGA, which, if ex-
ceeded, renders a building of class k as uninhabitable and bk its logarithmic dispersion. 
Then, the conditional probability of a building being rendered uninhabitable is P(Hi=0|fi) 
= Φ(fi-hk)/bk). Ground-motion prediction equations (GMPEs) provide logarithmic mean, 
within-event and between-event residuals of PGA conditional on a specified magni-
tude, epicenter and site coordinates. Together with a suitable spatial correlation model, 
one can specify the mean vector and covariance matrix of the joint multivariate normal 
distribution p(f*|X*) [9], where X* collects the inputs (i.e. spatial coordinates) for which 
predictions are made. In contrast to the classic GP classification problem, a seismic 
network at locations Xs collects noisy measurements zs ∈ ℝ of the function f. Assum-
ing independent and normally distributed noise, the posterior predictive distribution 
p(f*|X*,zs,Xs) is analytically tractable and itself a multivariate normal distribution (see 
[10] for a detailed treatment in the context of shake maps). Thus, by sampling a large 
number of realizations from this distribution and subsequently from the conditionally 
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independent Bernoulli distributions P(Hi|fi), we obtain a first rapid estimate of the ag-
gregated number of uninhabitable buildings NUI|zs. Note that dependence on the inputs 
is suppressed to lighten the notation. 
The habitability status y of inspected buildings X is accumulated from inspections re-
ports in days after the earthquake. By applying the EP algorithm it is possible to derive 
an updated approximate posterior predictive distribution, q(f**|X**,y,zs,Xs), a multivariate 
normal distribution, as new inspection data is accumulated. Note that the new matrix 
of test inputs, X**, excludes the inputs of already screened buildings X. By applying the 
above-mentioned sampling scheme and adding the screened buildings that were as-
sessed as uninhabitable we obtain increasingly constrained estimates of NUI| y, zs.

3 Case-study

Sections 3.1 and 3.2 introduce the layout of the case-study and the information and 
earthquake hazard and risk models that are available prior to the earthquake event. 
Section 3.3 presents the considered scenario earthquake event, the event-specific in-
formation that is available in the first ten days after the event, and the hidden data-
generating process used to simulate this dataset. Notably, the data-generation process 
in the scenario event uses earthquake hazard and risk models different from those used 
to formulate the pre-event earthquake risk prediction. Section 3.4 updates the prior 
model with the event-specific information to predict the number of uninhabitable build-
ings.

3.1 Layout and information available prior to the event

The area of interest, illustrated in Fig. 1a, covers 22 zip-codes of the greater Zurich area 
in Switzerland. We focus on about 34’000 ordinary residential buildings, i.e. buildings 
with less than 10 stories and with a primary residential use. Pre-event information cov-
ers the spatial coordinates, the construction year and the number of stories of every 
building [11]. The building stock comprises about 25’000 buildings that were built be-
fore 1980 as shown in Fig. 1b. The majority of the buildings are between 3 and 5 stories 
high, as shown in Fig. 1c. Whereas those features are available or can be derived from 
information in public databases, neither the corresponding models used for the prior re-
gional earthquake risk model, presented in Section 3.2, nor the models used to generate 
the event-specific dataset, discussed in Section 3.3, are tailored to this specific region 
and building stock. Thus, results are not necessarily realistic outcomes for such an event 
occurring in the greater Zurich area. 
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Figure 1.  a) Region of interest with delimitation of the zip-codes and locations of about 34’000 individual 
buildings; b) cumulative distribution of the building construction year parameter (c) histogram of 
the building story height parameter

3.2 Regional earthquake risk model available ex-ante

The regional risk model, assumed to be available prior to the considered earthquake 
scenario, categorizes buildings into six classes: unreinforced masonry buildings with ei-
ther wooden floors or stiff floors (two classes), and reinforced-concrete buildings with a 
shear-wall or a moment-frame lateral force resisting system that have been construct-
ed before or after the existence of seismic design guidelines (four classes). The first two 
classes are further divided into low-rise (1-2 stories) and mid-rise (3-5 stories) build-
ings, whereas for the latter four classes we consider low-rise, mid-rise and high-rise (6 
stories or higher) buildings, resulting in a total of 16 subclasses. For every building sub-
class k ∈ [1, 2, ..., 16] the set (hk,bk) 

states the parameters of the log-normally distrib-
uted building vulnerability functions with respect to the uninhabitable post-earthquake 
performance state in terms of (logarithm of) PGA, as defined in Section 2.2. 
Random fields of PGA are simulated using the GMPE of Akkar and Bommer [12] to-
gether with the spatial correlation model of Esposito and Iervolino [9]. Since the true 
classes of buildings are not known, an expert-knowledge-based model is employed to 
associate a building class to every building, depending on its construction year and the 
number of stories. The parameters (hk,bk) are based on building vulnerability distribu-
tions that have been compiled in the Syner-G project [13] and state the probability of 
exceeding a set of four discrete damage states (from slight to heavy/complete damage) 
conditional on PGA. We estimated (hk,bk) by assuming that all buildings with damage 
exceeding slight damage and an additional 10 % of all buildings with slight damage are 
uninhabitable.
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3.3 Scenario earthquake event

A scenario earthquake with a magnitude of 5.8 and an epicenter located approximately 
4km to the closest buildings is considered and illustrated in Fig. 2a. Five seismometers 
within 50 km of the epicenter provide records of the event. After the earthquake strikes, 
a hotline and a web-based service is made available, such that residents can report 
damage and request a safety screening. Engineering resources are rapidly briefed to 
start with the safety screening process. In this process, inspection teams gather infor-
mation on building classes and assess the habitability status. Fig. 2b shows the cumu-
lative number of buildings screened during the first 10 days after the event, whereas 
Fig. 2c indicates how many buildings have been screened in each of the 22 zip-codes 10 
days after the event. 
The hidden data-generating models used to produce this simulated dataset, labeled 
as the “true” realization, are deliberately chosen to differ from the models available for 
earthquake risk prediction (Section 3.2). Most notably, a set of four ground-motion in-
tensity measures is used to derive the habitability status of buildings, instead of PGA. 
The building stock is categorized using building classes defined in the global risk model 
[3] and a class is associated to all buildings depending on their construction age and 
the number of stories. We generate one realization of PGA and spectral accelerations 
at fundamental periods of 0.3, 0.6 and 1.0 seconds using the GMPE of Bindi et al. [14], 
the spatial cross-correlation model of Markvidha et al. [15] for the within-event re-
siduals and of Baker and Cornell [16] for cross-correlation of between-event residuals. 
Employing the fragility curves given by Silva et al. [3], the damage state of each building 
is estimated. Then, we assume that occupants of all buildings that sustained at least 
slight damage request a safety screening. Of all buildings with a request, we assume 
15 % of the buildings with slight damage are uninhabitable, together with all buildings 
having a damage state exceeding slight damage. At the beginning of every day, avail-
able inspection teams are randomly assigned to a building with an open request for 
safety screening. After completing the first inspection, each team continues to inspect 
the geographically closest building having an open request.
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Figure 2.  a) Epicenter of the considered scenario earthquake of magnitude 5.8 and locations of seismic 
network stations, their epicentral distance and the measured peak ground acceleration, b) 
Cumulative number of screened buildings in the entire region of interest over the first 10 days 
after the event, c) The number of buildings per zip-code that have been screened 10 days after 
the event

3.4 Dynamic updating of the predicted number of uninhabitable buildings

Using the method described in Section 2, we predict the number of uninhabitable build-
ings NUI in the entire region of interest and examine how these predictions evolve over 
the first 10 days after the event. We denote the aggregated inspection data (see Fig. 2b) 
obtained until and including day t as y0:t and the prediction derived using the posterior 
of the latent function conditional on this data as NUI |y0:t,zs. The solid line in Fig. 3a illus-
trates E[NUI |y0:t,zs] over the first 10 days, e.g. t ∈ [0, ..., 10]. Furthermore we state the 
a-quantile as qa[NUI |y0:t,zs] and the 90 % credibility interval as the range between q0.95 
and  q0.05. The “true” realization, simulated with the model described in Section 3.3, is 
indicated with the dashed black line and corresponds to 7’500 uninhabitable buildings. 
On day 0, immediately following the event, the earthquake risk prediction is based on 
the recorded PGA values only (see Fig. 2a) and the credibility interval spans from 7’000 
up to 25’000 uninhabitable buildings, with an expected value around 16’000 uninhabit-
able buildings (out of the approximately 34’000 buildings in the considered region). In 
the following days, leveraging the information from rapid visual safety screening, the 
uncertainty in the predictions is reduced and the trend tends towards the “true” realiza-
tions. Panel (b) of Fig. 3 illustrates the same predictions as a function of the cumulative 
number of screened buildings.



719POST DISASTER RECOVERY AND RECONSTRUCTION
1st Croatian Conference on Earthquake Engineering - 1CroCEE

Figure 3.  Evolution of predictions of number of uninhabitable buildings NUI |y0:t,zs as a function: a) days t  
after the event, b) cumulative number of screened buildings available for inference. Light and 
dark red shaded intervals indicate the 90 % and 50 % credibility interval, respectively

Instead of predicting the outcome for the entire region, the proposed method also deliv-
ers predictions on a zip-code level, as illustrated in Fig. 4. The top, middle and bottom 
row show the 90 % quantile, the expected value and the 5 % quantile of the relative 
number of uninhabitable buildings in each zip-code, respectively, for t ∈ [0,5,10] days 
after the event, going from left to right. The right side of Fig. 4 illustrates the “true” re-
alization of the ratio of uninhabitable buildings in each zip-code. Whereas for day 0 the 
predictions are very uncertain, and this ratio might be between 10 % and 80-90 % for 
almost all zip-codes, we observe that including screening results of the first five days 
(approximately 300 inspected buildings) already leads to a more precise and accurate 
spatial pattern. 

4. Conclusion 

A Gaussian Process based classification is used to reduce the uncertainty ranges of pre-
dicted loss of housing capacity in a region affected by an earthquake. Having in mind 
that this paper presents results for a simulated scenario earthquake, following prelimi-
nary conclusions are drawn:
Classification techniques show potential to provide stable and precise predictions of the 
number of uninhabitable buildings in a fraction of the time required to inspect the entire 
building stock.
Based on incomplete inspection data from randomly selected buildings, spatially accu-
rate distributions of unsafe buildings are achieved and provide a significant uncertainty 
reduction with respect to rapid loss assessment based on shake maps.
Gaussian Process classification is robust to inevitable discrepancies between the re-
gional risk model and the underlying unknown behavior of buildings undergoing an 
earthquake.



720 POST DISASTER RECOVERY AND RECONSTRUCTION
1st Croatian Conference on Earthquake Engineering - 1CroCEE

The predicted quantity of interest in this paper is chosen to be the habitability of build-
ings, addressing the loss of regional housing capacity after an earthquake, an important 
measure of community disaster resilience. However, the proposed framework can be 
applied to other useful quantities for rapid post-earthquake loss and recovery assess-
ment, such as financial loss or repair effort. Notably, the dependence on the outcome of 
visual inspection reflects the current state of the art. The framework can, however, in-
gest post-earthquake damage information from other sources, such as image process-
ing from either drones or satellites or structural health monitoring applications. Finally, 
the robustness of the framework to inaccurate inspection outcomes and approximate 
exposure models will be assessed in future work.

Figure 4.  The 95 %-quantile, expected value and 5 %-quantile (from top to bottom) of the ratio of 
uninhabitable buildings for each zip-code predicted on day 0, and updated with inspection data 
accumulated until day 5 and day 10 after the event. The right-hand side shows the “true” ratio of 
uninhabitable buildings in this scenario
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