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Abstract
The continuous expansion of seismic catalogs is increasingly challenging the validity of existing 
ground motion prediction equations. For such real-time data, the transition of ground motion 
modeling toward automation became eminent. This article put forth a dynamic intelligent ground 
motion prediction system, automated through a novel hybridization of neural networks with a 
multi-objective swarm intelligence optimization to facilitate updated predictions. Under the 
proposed framework, acceleration data are parsed from catalogs in real-time and the continuous 
stream of seismic data is analyzed to both (i) optimize model predictions and (ii) minimize its 
computational demand. Though built adaptive to different geographical locations, the system in 
this article is presented in the context of Turkey. Therefore, real-time strong ground-motion records 
are obtained from the AFAD database, where the peak ground acceleration (PGA), velocity (PGV), 
and displacement (PGD) are examined against various seismic variables including earthquake 
magnitude, source to site distance, average shear-wave velocity, and focal mechanism. The 
model predictions were verified against a broad testing sample and predictions by various GMPE 
models for Turkey. Thereafter, the model stability was examined through an investigation into the 
sensitivity of the PGA, PGV, and PGD predictions to data and parameters’ discrepancies. Finally, 
this article discusses the future potentials and challenges facing the developed framework.
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1	 Introduction

In 1999 an earthquake occurred at Kocaeli causing a huge life and property loss and 
triggering a massive shift and expansion in the country’s seismic network. In the wake 
of the 1999’s earthquake, seismological studies and research gained momentum and 
the Turkish seismic network expanded drastically to address the periodic seismic activ-
ity of the North Anatolian fault system (NAF). Since then, Turkey has sustained many 
large earthquakes (2011 Van Mw=7.1, 2012 Fethiye Mw=6.0, 2017 Bodrum Mw=6.6, 
etc.) and the last months of 2019 witnessed significant seismic activities. In September 
2019, an earthquake occurred at Silivri, Marmara Sea with a magnitude of 5.8 and felt 
in Istanbul and nearby cities. In January 2020, the Elazığ earthquake followed this major 
earthquake on the eastern Anatolian fault system (EAF) with a 6.5-moment magnitude. 
In October 2020, the largest earthquake occurred at the Aegean Sea with a 7.0-moment 
magnitude. This event affected Izmir in Turkey and it caused 177 deaths, 1034 injures 
and 15000 people became homeless. Considering the frequency and the long record 
of Turkey’s seismic activities (and countries with similar patterns), the development of 
accurate seismic modeling necessitates the inclusivity of new and upcoming records.
Hitherto, many studies tackled the modeling of the ground motion prediction equations 
(GMPE) both in Turkey and worldwide[1–4]. These models are crucial for estimating 
earthquake parameters to figure out the earthquake forces that will be used for struc-
tural design. Nevertheless, the stagnant nature of the preceding models challenges 
their accuracy with time. In Turkey, the seismic network has grown so dramatically since 
1999 that the current network consists of 799 operating accelerometers. Moreover, the 
seismic database is expanding exponentially as depicted in Figure 1.

Figure 1. The seismic network and database expansion following 1999’s earthquake

To cope with this expanding nature, this study presents a dynamic intelligent ground 
motion prediction system, capable of updating its structure and optimizing its predic-
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tion with minimal computational demand. In contrast to other machine learning-based 
models in the literature which still adapts the bulk single time training with constant 
data. The proposed intelligent system is built to monitor, retrieve and inform its predic-
tion spontaneously by implementing optimized data scraping techniques with online 
machine learning algorithms. Therefore, though the system can be deployed on a global 
scale, this study introduces CATALOGIST (Catalogues’ intelligent system for tectonics 
predictions) in the context of Turkey, to be the first fully automated system for ground 
motion prediction. 
This study is structured as follows, the next section establishes a brief background on 
the seismology and major fault systems in Turkey and the Anatolian plateau. Section 
three “Model parameters and seismic catalog” highlights the up-to-date available data 
in the Turkish ground motion database (AFAD-TADAS) and its statistics and parameters 
of significance to the developed model. Meanwhile, section four introduces “The auto-
mated data monitoring system (ADMS)” and its optimization for the data retrieval from 
the web-based database. Thereafter section five delivers the machine learning model 
and its training for the prediction of future ground motions. The sixth section provides 
the comparisons between the introduced model and a model from the literature de-
veloped in 2003. The comparison is made with (i) only the data available to the 2003’s 
model, and (ii) up-to-date records in the Turkish database to investigate the degrada-
tion of accuracy with time for stagnant data-based GMPEs.

2	 Background

Turkey is located mainly on the Anatolian tectonic plate. Surrounded by the Arabian plate 
on the east and the African plate on the south, the Anatolian plate is forced constantly 
to move to the west. However, the northern side of Turkey is bounded by the Eurasian 
plate, and the Interaction between these plates (the Anatolian and the Eurasian) defines 
the sources for the major tectonic activities in Turkey. The major earthquake sources of 
Turkey are the North Anatolian fault (NAF), East Anatolian fault (EAF), and Aegean fault 
zone (AFZ). NAF has a right-lateral strike-slip fault mechanism and since the 1939 Er-
zincan earthquake, it has a periodic activity within 20 years on average. EAF is located 
on the Southside of Turkey. Due to the interaction between the Arabian-African and 
Anatolian plates, EAF converges with NAF around Karliova, Bingol which extends to Er-
zurum. AFZ is a set of normal faults and they are converging on the Marmara Sea with 
NAF as some smaller fault sets[5,6].
To model and predict ground motion parameters associated with such activities, the 
ground motion prediction equations (GMPEs) are developed. GMPEs relate the ground-
motion parameters (PGA, PGD, PGV) to the different independent incident and site pa-
rameters like earthquake magnitude (with different magnitude scales), distance from 
the source to the site (with its various measures), local site conditions, earthquake 
source characteristics and fault mechanism, and the wave propagation. In most cases, 
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the physical parameters of stress drop, rupture propagation, directivity, basin effects, 
and nonlinear soil behavior are not addressed in these models. A standard way to gen-
erate the GMPEs from the recorded strong-motion data is using regression analysis 
with fixed or mixed effect for inter and intra-event variability. In each form, a straight-
forward statistical model is also developed to explain the tendency of the ground-mo-
tion parameters with other parameters at the station.
Correlating PGA, PGV, and PGD with the predictor parameters during a mathematical 
form isn’t a straightforward task, this is directly associated with the highly nonlinear re-
lationships. Additionally, the numerous limitations of the statistical techniques strongly 
affect the capabilities of the regression-based GMPEs. Most typically used regres-
sion analyses can have large uncertainties. Its major drawbacks for the idealization of 
complex processes, approximation, and averaging widely varying prototype conditions. 
Furthermore, the regression analysis tries to model the character of the corresponding 
problem by a pre-defined linear or nonlinear equation (or set of equations). Another 
major restriction in the application of the regression analysis is that the assumption of 
normality of residuals. Thus, the developed attenuation models are often limited in their 
ability to reliably simulate the complex behavior of the ground-motion parameters. The 
aforementioned deficiencies indicate the requirement of employing more comprehen-
sive methods, that are adaptive to decrease the errors for the ground-motion param-
eters estimates[4,7].

3	 Model parameters and seismic catalogue 

In this project, an automated catalog monitoring system is tasked with retrieving the 
ground motion records in real-time, and with storing and processing the various pa-
rameters to feed them in an intelligent ground motion prediction model. Therefore, it is 
essential at this point to introduce the main parameters commonly used when estab-
lishing empirical attenuation models. The ground-motion prediction equation (GMPE) 
intuition is best presented with the following conventional structure Eq (1).

	 (1)

In this expression, Yij denotes the response of interest (PGA, PGV, PGD …) for an event 
i and record j, while Mi is the event’s i magnitude and is the coefficients matrix and are 
the residual error. Many models were developed to incorporate more parameters and to 
further account for the uncertainties and correlations among the various records from 
a single station or associated with a single event. However, the conventional structure 
was implemented in this investigation with the inputs being moment magnitude, epi-
central distance, and shear wave velocity in the upper 30 meters. The outputs were se-
lected as the peak ground acceleration (PGA), peak ground velocity (PGV), and the peak 
ground displacement (PGD) [7].
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3.1	Data catalog

In Turkey, due to the tectonic activities in this region, and the increase of awareness 
since 1999’s Kocaeli earthquake, the Turkish seismic network witnessed a great expan-
sion. Nowadays, strong ground motion records are published and maintained by the 
disaster and emergency management presidency of Turkey (AFAD). Moreover, recently 
in 2020, AFAD launched the Turkish Accelerometric Database and analysis system (TA-
DAS) which provides access to records from 1976 with daily updates and five-day pub-
lication gaps for the new records. TADAS provides both raw acceleration records and 
processed data for all stations operating in the Turkish network. The processed data 
files are available in ASCII, ASDF, MINISEED, or SAC formats. In this study, the TADAS 
database is the main source for data retrieval. 
The main parameters of interest in TADAS database are, date–time, location (longitude, 
latitude), elevation, depth, magnitudes (, , , , ), source to site distance (, , , in km), (m/s) 
and soil classification according to Eurocode, sampling interval, lowpass, and high-pass 
Butterworth filtering values, peak ground acceleration (cm/s2), peak ground velocity 
(cm/s), peak ground displacement (cm), fault mechanism. 

3.2	 Investigated parameters and model definition

In this study, the parameters selected are the magnitude, which is defined in terms 
of moment magnitude which eliminates the saturation effects for magnitudes greater 
than 6.0. for the records with missing moment magnitude and available local magnitude 
the local magnitude is used for all events with M less than or equal to 6.0. Here it is as-
sumed that for magnitudes less than 6.0 the ML is approximately equal to Mw as done 
by Ozbey[7]. In this study, only the records with a moment magnitude higher than 5.0 
were selected for analysis. On the other hand, the epicentral distance was implemented 
for this investigation as it was found available for all the records. However, this would 
require more elaborate investigation in the future since the differences between the 
several distance definitions tend to have significance in the near field data (this study 
was limited to the distances between 0 km and up to 200 km). The effect of local site 
conditions is also included in the attenuation models studied through the inclusion of 
the shear wave velocity. Furthermore, this study implemented the site classification 
by the Turkish code (ZA for Vs30>1500 m/s, ZB for Vs30 between 760 and 1500, ZC 
for values between 360 and 760, and ZD for values between 180 and 360, and ZE for 
values less than 180). The data used in this investigation with the distribution across 
various distances, various magnitudes, and different site conditions is shown in figure.2. 
finally, although distinguishing between the various fault mechanisms generally is con-
sidered important in this study, it was not included explicitly in the input. For the output 
peak response parameters (PGA, PGV, PGD) the geometric mean of the two horizontal 
components was estimated and used.
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Figure 2. Data distribution for soil classes ZA and ZB, ZC, ZD, and ZE, respectively

4	 The Automated Data Monitoring System (ADMS)

Due to the highly expanding nature of today’s catalog, the urge for informed models in 
real-time became inevitable. Subsequently, this investigation relayed first on real-time 
retrieval of the seismic records as they are introduced in the seismic catalogs. The data 
cycle is illustrated in this section from the monitoring of the seismic catalog to the final 
retrieval and safekeeping of the acquired records. 

4.1	Data Monitoring Unit (DMU)

To provide automated real-time updates for the intelligent ground motion prediction model, 
the software was written in Python language to deliver periodic and daily-request to AFAD’s 
database to query for new records. However, to minimize the load on the AFAD database, 
the software request interval was maintained minimal. The software triggers every 24 hours 
at 3:00 AM at Istanbul local time (1:00 AM GMT) and sends a request to the Turkey accel-
erometric database and analysis system (TADAS) for new records. The query cycle network 
performance counters are given in figure.3. The query process starts with Local Processing 
for the new query inputs which are handled in an input string containing the magnitudes 
bounds, the epicentral distance bounds, and geographical and time constraints. This is then 
handled to a resolved IP in the form of an HTTP request through an established TCP connec-
tion. The query process ends with receiving the database server’s response containing the 
number of newly available records (if any). During testing and subsequent operations execu-
tion time of this cycle ranged from 5 seconds up to 14 seconds depending on the number of 
found records with a fixed initial connection establishment of 4 seconds.

Figure 3. the network performance of the data monitoring unit
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Once the data monitoring unit (triggered by a time scheduler) receives the database 
response, it triggers the data indexing unit (DIU).

4.2	Data Indexing Unit (DIU)

Exploiting the same connection established by the data monitoring unit DMU, the data 
indexing unit scraps the database response collecting only the three essential identifi-
ers (event, station code, and magnitude) for each retrieved record. These identifiers are 
then examined by the DIU in terms of both the number of new records and the magni-
tudes of these records. This is to allow for the conditional triggering of the bulk records 
retrieval process by the data retrieval unit and to maintain a minimal interaction time 
with the local database. 
The execution time of the DIU was optimized by exploiting the pre-established con-
nection with the TADAS server. Therefore, the execution time ranges between 0.0003 
milliseconds up to 0.864 milliseconds depending on the number of new records to in-
dex. The output of the DIU indexing is stored and handled in JSON format for efficient 
retrieval in the data retrieval stage.

4.3	Data Retrieval Unit (DRU)

The triggering criteria for the data retrieval unit DRU are flexible and can be set to any 
value with an update versus efficiency trad-off. Herein, for the sake of the present 
study, the DRU triggering criteria are listed in the table.1.

Table 1. Triggering criteria adopted for the present investigation to trigger the data retrieval unit (DRU)

Once the threshold criteria are met in terms of either an urgent event’s magnitude ( or 
the number of new events and record (with ) the data retrieval unit DRU starts process-
ing for the retrieval of JSON formatted records identifiers indexed by the DIU. However, 
due to the high demand of this stage and the network delays present when interact-
ing with the web-based database, the single processing core and single-threaded op-
erations were deemed inefficient. Therefore, a multi-threaded multiprocessing scheme 
was examined for the enhanced speed of the data retrieval.

Unit Criterion Threshold

DMU Time Daily at 3:00 AM at IST local time (1:00 AM GMT)

DRU

Moment Magnitude Urgent retrieval if occur

Number of new events Exceptional retrieval if number of new events3

Number of new 
records Typical retrieval if number of new records40
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5	 Results and discussion

5.1	Optimizing data retrieval with parallelism

In this investigation the Python programming language was implemented for the moni-
toring, scraping, and processing of the data after storage. Inherently, however, Python 
is a linear language that was not designed considering more than one core. therefore, 
python includes a global interpreter lock (GIL) to ensure thread-safety and to globally 
enforce lock when accessing a Python object. However, various libraries were developed 
to bypass this limitation (eg, Dask, Joblib, and multiprocessing), and thus, facilitating the 
use of both multiprocessing and multithreading in this study[8,9]. 
Nevertheless, the libraries just mentioned do not coordinate the spawning and pool-
ing of threads, which might cause over-subscription (the case where more threads are 
active than the hardware available resources can handle, leading to frequent context 
switches and sub-optimal performance. Therefore, the practice of determining the op-
timal number of threads per processor core is widely adapted to tune the performance 
with a specific CPU’s scheduler to prevent the processor overhead with multiprocessing 
and threading. It is also crucial for benchmarking whether an input/output (I/O) bound or 
a processor overhead is dominating the execution time in web scraping[9].
In this investigation, a typical 4 physical cores Intel(R) Core (TM) i7-8550U CPU @ 
1.80GHz processor was used with 12 GB ram. Moreover, GPU processing capabilities 
were not employed in this investigation. The optimization was done by the incremental 
decrease of the records per thread number and by the incremental deployment of fur-
ther CPU cores into the processing pool. Figure.4 presents the results of the optimiza-
tion for the retrieval of 20 records with threads between 1 and 20 for a single processor 
(records per threads number between 20 and 1, respectively). Thereafter, an optimiza-
tion of the processing core number was conducted with (1, 2, 3) cores deployed (the 4th 
core was preserved for system operations).

Figure 4. The data retrieval performance analysis with parallelization
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Following the optimization analysis as per figure.4 it was found that the process is 
mainly I/O bonded; where I/O (Input/Output) bounds are due to the idle time in which 
the processing thread/core is waiting for the server response. The efficiency of incorpo-
rating a second thread per processor core results in up to 50 % execution time reduction. 
Moreover, further spawning of a thread increases the accuracy up to 56 %. However, 
at this level of computational demand and beyond the threads started finishing at the 
same time resulting in overhead for the processing where the schedular switches re-
peatedly between various active threads which halts the operations. Table 

Figure 5. �Network performance during the simultaneous retrieval of six records by three CPU cores and 
two threads each

With the multiprocessing case, a total of 5600 records were split among (1, 2, 3) pro-
cessors with 2 threads per processor to overcome the waiting for the server response. 
Moreover, for the multiprocessors investigation, various deposits were assigned to each 
processor to prevent data overlaps and a potential corruption of the local database. Fur-
thermore, separate loggers were assigned to maintain a record of potential issues and 
trace the responsible processor. Finally, it was found that 3 processors with two threads 
each yield relatively higher performance and helps to exploit the processing unit more 
efficiently. Fig.5 next depicts the network performance profiling for six records from 
the TADAS database by the optimized number of CPUs and Threads. The farthest left 
side depicts a single core with two successive record downloads while the second core 
is sending two consecutive requests in the middle portion. This is followed by the third 
core directly sending two threads in the farthest right with requests. This scheduling 
between CPUs use of the network is done internally by the schedular. 

Table 2. �The processing performance for the monitoring and retrieval units (computation, memory, and 
data processing rate)

Counter
DRU DMU

Average Maximum Average Maximum
Process CPU Usage 0.6 % 6.8 % 0.7 % 4.2 %

Process Memory Used 1.52 GB 1.56 GB 890.8 MB 900.0 MB
Process Thread Count 86 90 86 88
Process Handle Count 1755 1811 1951 1973

Process Data Rate 0.0 MB/Sec 1.1 MB/Sec 0.0 MB/Sec 0.9 MB/Sec
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5.2	Validation and sample training session

Following the development of the ADMS system, a sample neural network training ses-
sion was attached to it using Keras and tensor flow. The trained network was com-
pared to the model developed by Ozbey,2003[7] to investigate its accuracy at different 
time frames (thus, if it is accurate today, will it be accurate before 20 years or after 20 
years?). Therefore, the selection of this model is mainly done to investigate the predic-
tion’s durability with time and different degrees of noise in the data. It was found that 
the model was accurate satisfactorily compared to Ozbey’s model with a slope in linear 
regression between 0.85 and 0.91. Therefore, the results of the model training using 
the entire TADAS records up-to 2003 were compared to Ozbey’s findings. The two mod-
els showed comparable accuracy. On the other hand, the prediction considering all data 
up to 2021 with Ozbey’s reveals the decrease in its accuracy. This is associated with 
the enormous number of records that were implemented in the proposed model (3844 
records) compared to the records available in 2003 for Ozbey’s model (195 records). The 
model along with the linear regression result is shown in Fig.6.

Figure 6. Proposed model prediction against Ozbey’s 2003 model for ground motion prediction

6	 Conclusions

In this investigation, it was found that the implementation of automation to the ground 
motion records retrieval, monitoring, and processing up to the training can be achieved 
efficiently even with a typical computational resource. In this study, an automated sys-
tem was optimized through multiprocessing and multithreading to optimize its com-
putational demand. Thereafter, the accuracy of the prediction of the proposed system 
was examined in comparison to a model for the ground motion prediction in Turkey. 
The model accuracy was comparable to the regression-based model for the same data. 
However, for the increased amount of data present with time the proposed model 
showed superior accuracy.
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The system introduced in this study would be further advanced with optimization to 
the machine learning training computational cost, and the accuracy of prediction shall 
be enhanced further. Furthermore, it is planned to expand this system to PEER and IRIS 
DMC databases to increase its geographical coverage beyond Turkey.
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