

LOCAL EARTHQUAKES - GROUND MOTION MODELS FOR **EPICENTRAL ZONE**

Snezana Gjorgji Stamatovska¹⁾

(1) Full Professor – retired, Ss Cyril and Methodius University, Institute of Earthquake Engineering and Engineering Seismology, Skopje, R.N. Macedonia. snezanagj.stamatovska@gmail.com

Abstract

Based on records on occurred shallow earthquakes obtained on soil type rock, epicentral distances of $R_a \le 20km$, focal depths $h \le 10 \, km$ and local magnitude M = 3.9 - 6.1, ground motion models GMMs for an epicentral zone were developed. Investigated were horizontal acceleration response spectrum SA for 5% of the critical damping and for 221 models of a single-degree-of-freedom system with a natural period ranging from 0.01 to 5.0 seconds.

Two mathematical physical models were selected. In the first one, the horizontal acceleration response spectrum SA was dependent on magnitude only, whereas in the second one, it depended on both magnitude and hypocentral distance. For an assumed normal distribution of the natural logarithm of SA, a multi-linear regression analysis was carried out. The results were regression coefficients and standard deviations. These are practically applicable for prediction of the expected SA in an epicentral zone by deterministic and probabilistic methods.

Keywords: ground motion models, spectral acceleration, epicentral zone, magnitude, epicentral distance

1. Ground motion models – GMMs

GMMs predict the expected level of ground motion depending on magnitude, distance, type of fault structure, local soil layers, azimuth, etc. They are empirical since they are developed by use of data from records of occurred earthquakes and using the regression analysis method. The selected mathematical form will fit in an available or formed databank of records of occurred earthquakes for an assumed normal or log-normal distribution of parameters on which earthquake ground motion depends. The result are regression coefficients and standard deviations. Such GMMs are called conventional /or traditional [1, 7, 8, 12]. Today, GMMs are also developed by use of machine learning approaches ML [6], which cannot be a replacement for the conventional ones. Therefore, the presented conventional GMMs in this paper are important for prediction of the seismic effect in an epicentral zone.

According to summary reviews of a large number of published GMMs [2, 3], it is evident that the number of GMMs for local earthquakes is very small [1, 6, 7, 12].

2. GMMs for Local Earthquakes as a Necessity

As a long year researcher [8, 10, 12] and user of GMMs [9, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23], the author has understood their great importance when probabilistic PSHA [9, 11, 13, 14, 19, 22, 23], and deterministic DSHA [9, 11, 13] methods are used for definition of seismic design parameters. Therefore, the development of GMMs for local earthquake effects is a necessity according to the author. This particularly holds for an epicentral zone and existence of shallow soil layers of weak characteristics that are great amplifiers of local and regional seismic effects upon seismic rock. The dynamic response of their characteristic soil model, upon the ground surface or at the foundation level, known as specific site spectrum SSS, very often surpasses the design spectra recommended and given in the valid standards.

SSS is particularly important in design of seismically resistant structures of the first class of importance, located in the immediate vicinity of active fault structures with the potential to generate local earthquakes with M > 6.5 according to Richter and Eurocode 8 [4, 5], moment magnitudes $M_w > 6.5$, according to UBC 2000 [24], and defined characteristic of local soils. Therefore, the regulations for design of seismically resistant structures [4, 5, 24] also contain defined principles and rules for its determination as well as criteria for its selection as a design spectrum of a site.

2.1. GMMs for Epicentral Zone

GMMs for an epicentral zone were investigated within the frames of the scientific-research project: Ground Motion Models [10]. The created databank of recorded accelerogrammes of occurred earthquakes obtained by SMA- instruments, Kinemetrics, from the strong motion instrument network of former Yugoslavia [8] and the Italian databank ENEA-ENEL (ENEA-ENEL: File ENEAUN TUTTO C VM/HPO 4.2 CMSL–SIAM– 8.4.87) were used. The recorded accelerograms contained in both banks were available as corrected time histories of acceleration.

These were used to create two separate datasets with different distribution of time histories of acceleration per earthquake parameters like magnitude M, epicentral distance R_e , focal depth h and local soil conditions. All this for the purpose of investigating the effect of the distribution of data upon the size of the expected SA in an epicentral zone.

Two sets of data were investigated:

I set 59 data: $h \le 10 \, km$, $R_o \le 20 km$ (M = 3.9 - 6.1, $R_h = 7. - 30 km$, h = 5 - 10 km)

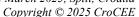
II set 101data $h \le 20 \, km$, $R_e \le 35 km$ (M = 3.9 - 6.5, $R_h = 7 - 40 km$, h = 5 - 17 km)

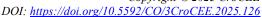
Computed were the horizontal acceleration response spectra for 5% of the critical damping $SA(T; \xi = 0.05)$ for 221 models of a single-degree-of-freedom system with periods ranging from 0.01 second to 5.0 seconds for each of the two data sets.

Two mathematical models (equations 1 and 2) were selected and fitted into each of the two created data sets.

ΓΜΜ1:
$$lnSA(T; \xi = 0.05) = b_1 + b_2 M + \sigma_{lnSA} P$$
 (1)

ΓΜΜ2:
$$lnSA(T; \xi = 0.05) = b_1 + b_2 M + b_3 lnR_h + \sigma_{lnSA} P$$
 (2)


$$R_h = \sqrt{(R_e)^2 + h^2} \tag{3}$$


where: $SA(T; \xi = 0.05)$ is the amplitude of the horizontal acceleration response spectrum for 5% of the critical damping in (cm/s^2) , M is local magnitude according to Richter, R_h is hypocentral distance in km., R_e is epicentral distance in km., h is focal depth in km., b_1, b_2, b_3 are regression coefficients, σ_{lnSA} is standard deviation, and P is random variable, with a value of zero for median and I for median plus one standard deviation.

The first GMM1 (Equation 1) is a function of magnitude M, i.e., of the earthquake energy, whereas the second GMM2 is a function of magnitude M and hypocentral distance R_h (Equation 2). In both equations, the term depending on the local soil conditions is omitted since the selected time histories of acceleration are obtained for the same type of soil, i.e., rock.

The size of SA amplutudes is directly proportional to the size of magnitude M and inverseley proportional to the size of distance R_h . Therefore, in the first GMM1, SA depends on M only, whereas in the second GMM2, SA depends on both M and R_h . With the application of both models, the assessment of the seismic effect in the epicentral zone is much more realistic.

A multi linear regression analysis was carried out for an assumed normal distribution for lnSA. In it, the dependent parameter was lnSA. Independent parameters were M for GMM1, and M and R_h for

GMM2. For each of both GMMs, 221 regression analyses were performed. Regression coefficients and standard deviations were obtained.

It was for the first time that GMMs obtained with the first set of data (Tables 1 and 2) were published. The results obtained with the second data set (containing also the data from the first set) or a total of 101 horizontal acceleration components, were published in 2008 [12], but are not presented for all 221 models of a single-degree-of-freedom system, but only for selected 43 (Note: equations 1 and 2 of these investigations also hold for the GMMs published in 2008. In these, there is a typing error. Specifically, in the mathematical equations, regression coefficient b_1 without ln before it, or the same as in eq. 1 and 2 herein, should be used). GMMs defined with the two sets of data refer to an epicentral zone. The difference is that some of these are for very shallow earthquakes with focal depth of down to 10 km, epicentral distances of up to 20 km and magnitudes between 3.9 and 6.1, whereas the others are for shallow local earthquakes with focal depths of down to 20 km, epicentral distances of up to 35 km and magnitudes between 3.9 and 6.5.

Using the results shown in Table 1 (GMM1, equation 1), horizontal acceleration response spectra SA for an expected earthquake with M = 6.5 were computed as median and median + one standard deviation (Figure 1, above). The comparison between these and those computed with GMM2 (Table 2, equation 2) for M = 6.5 and $R_h = 7$ km, as median and median + 1 standard deviation, is presented type A (Figure 1, above and below). Such a direct comparison between a deterministic spectrum and a probabilistic spectrum, given according to the European standard /or other valid standard, can be made for all cases when such comparison is required by regulations or recommendations. Namely, during definition of maximum possible earthquake on locations of structures of capital importance, particularly when no regulations are elaborated for them, as are large dams [13, 15]. In other cases, it is necessary to compute a probabilistic spectrum by seismic hazard analyses PSHA, for a defined return period, applying GMMs developed for an epicentral zone. If used as alternative in PSHA, they should be given a corresponding weight factor. The results from the PSHA should be compared to the design ones given in Eurocode 8, for corresponding return periods.

In completely the same way as in Figure 1 (above and below), Figure 2 (above and below) shows the horizontal acceleration response spectra SA for GMM1 and GMM2, for the same values of magnitude and hypocentral distance $(M = 6.5, R_h = 7km)$, as median and median + I standard deviation, for earthquakes with hypocentral depth of down to 20 km [12].

The effect of M and R_h for deeper local earthquakes ($h \le 20 \, km$.) is given in Figure 3 (above and below). GMMs defined with the two equations and with the second data set, or 101 data [12], were used. The acceleration spectra SA for a single value of magnitude, (M = 6.5), and varied values of R_h = 5, 7, 10, 20, 40 km are shown in Figure 3 (above), while for a single value of $R_h = 10$ km and varied values of M = 4.5 to 6.5, by a step of 0.5, they are given in Figure 3 (below). Figure 3 (above) shows that SA, for the range of periods T > 0.4 seconds, are decreased with the increase of R_h , whereas for T < 0.4 seconds, they are increased (the red line). For the same hypocentral distance, $R_h = 10$ km, and increase of magnitude M, SA are increased for the range of T > 0.3 seconds, while they are negligibly reduced for the range T < 0.3 seconds (black line).

3. Conclusions

The presented regression coefficients and standard deviations, for two mathematical models of ground motion, for soil type - rock, are practically applicable in defining the seismic design parameters by deterministic and probabilistic methods. While using them, care should be taken for the values of the boundaries of magnitude, epicentral distance and focal depth for which they are used, for the purpose of avoiding the extrapolation effect or making a mathematical error. While using very small hypocentral depths that are smaller than the least included in the data, it is recommended to use a mathematical model in function of magnitude.

The investigations presented herein are a contribution to better inclusion of the effect of local earthquakes in providing seismic resistance of structures.

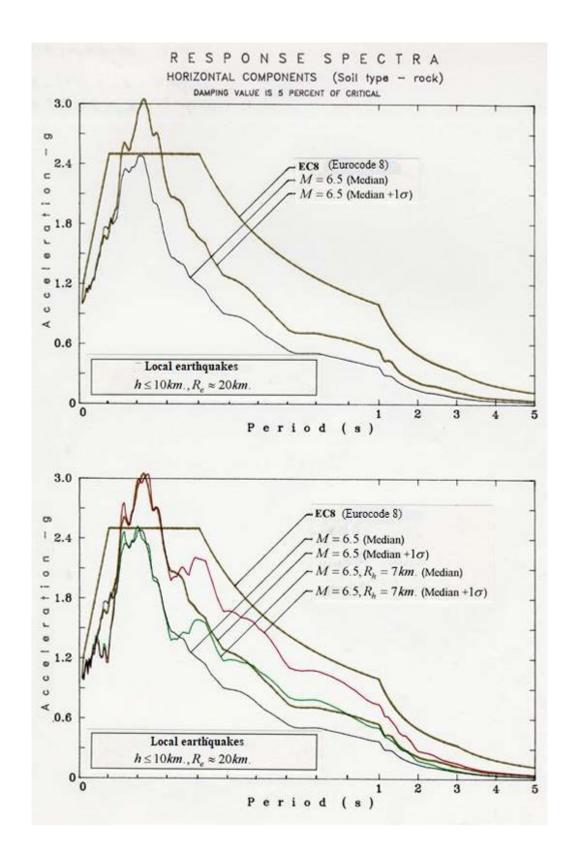


Figure 1. Comparison between expected SA (g) for an epicentral zone, for GMM1 (the figure above) and GMM2 (the figure below) and Eurocode 8.

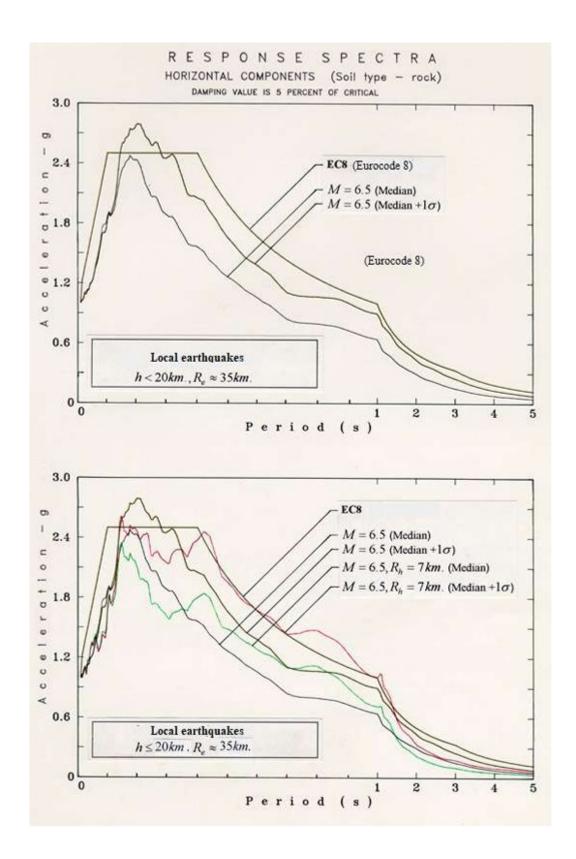


Figure 2. Expected *SA* (*g*) for an epicentral zone, for GMM1 (the figure above) and GMM2 (the figure below) and comparison with Eurocode 8.

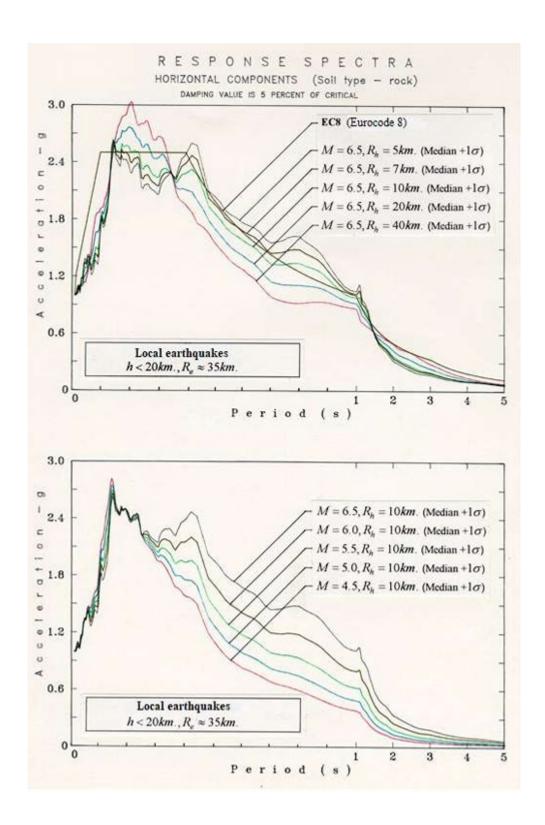


Figure 3. Distribution of expected SA(g) for an epicentral zone for GMM2 (the figure below) and comparison with Eurocode 8 (the figure above).

Table 1. Regression coefficients and standard deviation Mathematical model: $lnSA(T; \xi = 0.05) = b_1 + b_2M + \sigma_{lnSA}P$

No.	Period	b_1	b_2	$oldsymbol{\sigma}_{lnSA}$		1	2	IIISA	
	T (s)		<u>-</u>		NI.	Dania J	7	7	I
1	0.0100	2.7280	.2865	.5958	No.	Period	b_{I}	b_2	σ_{lnSA}
2	0.0145	2.7310	.2908	.5847		T (s)			
3	0.0190	2.6465	.3092	.5920	59	0.290	3.1373	.2971	.9134
4 5	0.0235 0.0280	2.5599 2.7046	.3343 .3101	.5898 .5711	60	0.295	3.1592	.2885	.9179
6	0.0280	2.7046	.3101	.5766	61	0.300	3.1789	.2808	.9278
7	0.0323	2.8587	.2894	.5792	62	0.305	3.1890	.2755	.9366
8	0.0370	2.9389	.2839	.5896	63	0.310	3.1782	.2754 .2792	.9433 .9452
9	0.0413	2.9838	.2820	.5797	64 65	0.315 0.320	3.1531 3.1297	.2792	.9452 .9493
10	0.0505	3.0690	.2697	.5759	66	0.320	3.1297	.2830	.9541
11	0.0550	3.1238	.2725	.5791	67	0.323	3.0666	.2887	.9579
12	0.0595	3.2308	.2640	.5633	68	0.335	3.0258	.2935	.9611
13	0.0640	3.3098	.2576	.5739	69	0.340	2.9773	.3000	.9587
14	0.0685	3.4338	.2414	.5728	70	0.345	2.9209	.3083	.9516
15	0.0730	3.4811	.2436	.5830	71	0.350	2.8837	.3122	.9438
16	0.0775	3.6054	.2289	.5626	72	0.355	2.8660	.3118	.9360
17	0.0820	3.5816	.2419	.5504	73	0.360	2.8716	.3068	.9301
18	0.0865	3.6808	.2278	.5407	74	0.365	2.8798	.3012	.9260
19	0.0910	3.8249	.2052	.5257	75	0.370	2.8609	.3021	.9289
20	0.0955	4.0689	.1656	.5435	76	0.375	2.8288	.3056	.9299
21	0.100	4.1839	.1518	.5586	77	0.380	2.7960	.3090	.9320
22	0.105	4.1673	.1605	.5794	78	0.385	2.7676	.3117	.9337
23	0.110	4.2340	.1446	.6043	79	0.390	2.7515	.3123	.9314
24	0.115	4.2185	.1483	.6361	80	0.395	2.7382	.3129	.9276
25	0.120	4.2124	.1512	.6525	81	0.400	2.7329	.3125	.9267
26	0.125	4.2442	.1486	.6460	82	0.420	2.6917	.3125	.9386
27	0.130	4.1652	.1696	.6491	83	0.440	2.7506	.2894	.9425
28	0.135	4.0044	.2044	.6777	84	0.460	2.6613	.2932	.9465
29	0.140	3.7978	.2454	.6967	85	0.480	2.5702	.2958	.9498
30	0.145	3.6550	.2711	.7086	86	0.500	2.4156	.3173	.9435
31	0.150	3.5136	.2966	.7051	87	0.520	2.2638	.3388	.9367
32	0.155	3.4297	.3099	.6965	88	0.540	2.0909	.3626	.9277
33	0.160	3.3998	.3134	.6905	89	0.560	1.9356	.3808	.9314
34	0.165	3.4233	.3085	.6858	90	0.580	1.8709	.3826	.9353
35	0.170	3.4275	.3086	.6865	91	0.600	1.8471	.3752	.9441
36	0.175	3.3737	.3198	.6991	92	0.620	1.8563	.3628	.9519
37 38	0.180 0.185	3.3784 3.3700	.3188 .3207	.7184 .7373	93	0.640	1.8525	.3554	.9459
39	0.183	3.2925	.3349	.7373 .7479	94	0.660	1.8504	.3464	.9364
39 40	0.190	3.2923	.3549	.7583	95	0.680	1.8641	.3335	.9297
41	0.193	3.1304	.3731	.7675	96	0.700	1.8539	.3240	.9262
42	0.205	3.0150	.3819	.7810	97 98	0.720 0.740	1.8087 1.7404	.3248 .3340	.9324 .9329
43	0.210	2.9715	.3888	.7953	98 99	0.740	1.6249	.3525	.9301
44	0.215	2.9635	.3887	.8113	100	0.780	1.5004	.3722	.9273
45	0.220	2.9640	.3847	.8312	100	0.780	1.3918	.3878	.9289
46	0.225	2.9688	.3795	.8427	101	0.820	1.3242	.3937	.9369
47	0.230	2.9723	.3754	.8488	103	0.840	1.2439	.4014	.9474
48	0.235	3.0277	.3608	.8568	104	0.860	1.1514	.4123	.9558
49	0.240	3.0573	.3506	.8661	105	0.880	1.0699	.4200	.9691
50	0.245	3.0717	.3424	.8777	106	0.900	1.0085	.4245	.9770
51	0.250	3.0281	.3476	.8873	107	0.920	.9593	.4272	.9816
52	0.255	2.9637	.3574	.8959	108	0.940	.9285	.4270	.9815
53	0.260	2.9213	.3626	.9043	109	0.960	.9127	.4234	.9826
54	0.265	2.9259	.3580	.9102	110	0.980	.8697	.4251	.9817
55	0.270	2.9561	.3480	.9141	111	1.000	.8053	.4308	.9806
56	0.275	2.9992	.3359	.9135	112	1.020	.7627	.4330	.9815
57	0.280	3.0841	.3153	.9109	113	1.040	.7198	.4353	.9857
58	0.285	3.1183	.3051	.9095	114	1.060	.6922	.4345	.9891
					115	1.080	.7137	.4242	.9922
									•

Table 1. Regression coefficients and standard deviation (continued) Mathematical model: $lnSA(T; \xi = 0.05) = b_1 + b_2M + \sigma_{lnSA}P$

No.	Period	b_I	b_2	$oldsymbol{\sigma}_{lnSA}$					
	T (s)	1	2	111321		i .			
116	1.100	.7185	.4168	.9936	No.	Period	b_{I}	b_2	$oldsymbol{\sigma}_{lnSA}$
117	1.120	.6945	.4154	.9950		T(s)			
118	1.140	.6432	.4188	.9977	170	2.18	-1.2319	.5751	1.0616
119	1.160	.5621	.4289	1.0044	171	2.20	-1.2606	.5776	1.0660
120	1.180	.4509	.4457	1.0102	172	2.22	-1.2887	.5800	1.0705
121	1.200	.3473	.4615	1.0132	173	2.24	-1.3159	.5822	1.0748
122	1.220	.2417	.4781	1.0146	174	2.26	-1.3459	.5851	1.0786
123	1.240	.1555	.4908	1.0163	175	2.28	-1.3889	.5910	1.0813
124	1.260	.0765	.5026	1.0172	176	2.30	-1.4276	.5962	1.0843
125	1.280	.0067	.5126	1.0159	177	2.32	-1.4577	.5997	1.0869
126	1.300	0708	.5240	1.0119	178	2.34	-1.4842	.6027	1.0885
127	1.320	1489	.5354	1.0088	179	2.36	-1.5098	.6054	1.0906
128	1.340	2185	.5444	1.0063	180	2.38	-1.5399	.6091	1.0926
129	1.360	2647	.5483	1.0036	181	2.40	-1.5654	.6119	1.0948
130	1.380	2964	.5489	1.0029	182	2.42	-1.5891	.6142	1.0969
131	1.400	3206	.5483	1.0027	183	2.44	-1.6144	.6169	1.0988
132	1.420	3414	.5469	1.0014	184	2.46	-1.6383	.6192	1.1007
133	1.440	3578	.5454	1.0007	185	2.48	-1.6509	.6190	1.1029
134	1.460	3698	.5437	.9982	186	2.50	-1.6598	.6181	1.1053
135	1.480	3742	.5400	.9975	187	2.52	-1.6682	.6170	1.1077
136	1.500	3852	.5377	.9978	188	2.54	-1.6760	.6158	1.1102
137	1.520	3935	.5348	1.0003	189	2.56	-1.6840	.6149	1.1130
138	1.540	4067	.5334	1.0022	190	2.58	-1.6921	.6139	1.1158
139	1.560	4196	.5323	1.0037	191	2.60	-1.6999	.6128	1.1181
140	1.580	4366	.5317	1.0061	192	2.62	-1.7102	.6123	1.1198
141	1.600	4587	.5319	1.0091	193	2.64	-1.7167	.6111	1.1218
142	1.620	4823	.5324	1.0126	194	2.66	-1.7214	.6094	1.1240
143	1.640	5046	.5326	1.0171	195	2.68	-1.7237	.6072	1.1265
144	1.660	5295	.5338	1.0212	196	2.70	-1.7256	.6051	1.1293
145	1.680	5525	.5344	1.0242	197	2.72	-1.7267	.6027	1.1313
146	1.700	5683	.5338	1.0248	198	2.74	-1.7341	.6017	1.1340
147	1.720	5975	.5360	1.0254	199	2.76	-1.7380	.5999	1.1366
148	1.740	6287	.5383	1.0267	200	2.78	-1.7359	.5970	1.1395
149	1.760	6594	.5403	1.0282	201	2.80	-1.7288	.5930	1.1425
150	1.780	6846	.5412	1.0297	202	2.82	-1.7194	.5886	1.1444
151	1.800	7036	.5408	1.0313	203	2.84	-1.7062	.5837	1.1466
152	1.820	7215	.5405	1.0317	204	2.86	-1.6903	.5782	1.1482
153	1.840	7630	.5452	1.0305	205	2.88	-1.6726	.5723	1.1495
154	1.860	8017	.5489	1.0305	206	2.90	-1.6593	.5674	1.1507
155	1.880	8405	.5527	1.0301	207	2.92	-1.6449	.5625	1.1523
156	1.900	8718	.5550	1.0290	208	2.94	-1.6423	.5600	1.1531
157	1.920	8930	.5554	1.0272	209	2.96	-1.6424	.5580	1.1533
158	1.940	9144	.5561	1.0271	210	2.98	-1.6424	.5559	1.1533
159	1.960	9402	.5579	1.0271	211	3.00	-1.6453	.5546	1.1537
160	1.980	9728	.5609	1.0275	212	3.20	-1.6850	.5418	1.1463
161	2.000	9969	.5621	1.0287	213	3.40	-1.6284	.5058	1.1332
162	2.020	-1.0195	.5628	1.0301	214	3.60	-1.5659	.4731	1.1201
163	2.040	-1.0407	.5631	1.0326	215	3.80	-1.4483	.4317	1.1219
164	2.060	-1.0608	.5630	1.0357	216	4.00	-1.4885	.4250	1.1260
165	2.080	-1.0843	.5637	1.0395	217	4.20	-1.4741	.4068	1.1189
166	2.100	-1.1171	.5663	1.0435	218	4.40	-1.5439	.4077	1.1092
167	2.120	-1.1532	.5699	1.0476	219	4.60	-1.5134	.3894	1.1086
168	2.140	-1.1833	.5723	1.0519	220	4.80	-1.4543	.3646	1.1133
169	2.160	-1.2098	.5741	1.0565	221	5.00	-1.3966	.3383	1.1119

Table 2. Regression coefficients and standard deviation Mathematical model: $lnSA(T; \xi = 0.05) = b_1 + b_2 M + b_3 lnR_h + \sigma_{lnSA}P$

No	Period T (s)	b_{I}	b_2	b_3	σ_{lnSA}						
1 2	0.0100 0.0145	3.7204 3.6740	.4090 .4073	5851 5560	.5708 .5621	No	Period T (s)	b_I	b_2	b_3	σ_{lnSA}
3	0.0143	3.7231	.4421	6348	.5612	59	0.29	4.1080	.4170	5724	.9029
4	0.0190	3.5984	.4625	6123	.5614	60	0.29	4.1121	.4061	5618	.9029
5	0.0233	3.5934	.4198	5241	.5510	61	0.30	4.1121	.3945	5431	.9196
6	0.0280	3.7016	.4436	5969	.5491	62	0.305	4.1000	.3864	5298	.9295
7	0.0323	3.7999	.4056	5549	.5564	63	0.303	4.1066	.3900	5474	.9352
8	0.0370	3.9480	.4084	5950	.5631	64	0.315	4.0853	.3943	5497	.9370
9	0.0413	4.0799	.4173	6462	.5467	65	0.32	4.0721	.3979	5557	.9409
10	0.0505	4.1313	.4008	6263	.5449	66	0.325	4.0628	.4007	5624	.9454
11	0.0550	4.1950	.4047	6316	.5477	67	0.323	4.0502	.4102	5799	.9434
12	0.0595	4.1988	.3835	5708	.5378	68	0.335	4.0445	.4192	6007	.9502
13	0.0640	4.1840	.3655	5154	.5547	69	0.33	4.0270	.4296	6189	.9465
14	0.0685	4.1325	.3276	4119	.5624	70	0.345	3.9883	.4401	6293	.9385
15	0.0083	4.0372	.3123	3279	.5787	70	0.343	3.9691	.4462	6400	.9296
16	0.0730	4.1435	.2953	3173	.5583	72	0.355	3.9764	.4489	6547	.9295
17	0.0773	4.1716	.3147	3478	.5439	73	0.33	4.0185	.4484	6762	.9203
18	0.0820	4.2335	.2960	3259	.5353	74	0.365	4.0733	.4485	7037	.9064
19	0.0803	4.2510	.2578	2512	.5241	75	0.303	4.0733	.4575	7420	.9062
20	0.0910	4.4854	.2171	2456	.5426	76	0.375	4.1194	.4675	7733	.9002
21	0.0933	4.7439	.2210	3302	.5534	77	0.373	4.1403	.4763	7992	.9043
22	0.10	4.7439	.2435	3962	.5705	78	0.385	4.1513	.4832	7992 8188	.9044
23	0.103	5.0188	.2433	4628	.5911						
23 24	0.11	5.0740	.2540		.6209	79	0.39	4.1646	.4867 .4890	8331	.9006 .8959
24 25	0.113	5.2457	.2340	5044	.6284	80	0.395	4.1641		8407	
	0.12	5.2854	.2772	6092		81	0.40	4.1729	.4903 .4945	8491	.8941
26				6139	.6210	82	0.42	4.1658		8691	.9046
27	0.13	5.2426	.3027	6353	.6221	83	0.44	4.2230	.4712	8681	.9089
28	0.135	5.0579	.3344	6212	.6539	84	0.46	4.0701	.4671	8306	.9167
29	0.14	4.8822	.3792	6394	.6721	85	0.48	3.9697	.4686	8251	.9207
30	0.145	4.7554	.4069	6489	.6837	86	0.50	3.8556	.4951	8491	.9118
31	0.15	4.5899	.4295	6346	.6814	87	0.52	3.7150	.5180	8556	.9040
32	0.155	4.4436	.4351	5978	.6758	88	0.54	3.5437	.5419	8566	.8944
33	0.16	4.4014	.4371	5905	.6702	89	0.56	3.4334	.5657	8831	.8957
34	0.165	4.4134	.4308	5838	.6659	90	0.58	3.4177	.5735	9120	.8968
35	0.17	4.4161	.4307	5829	.6667	91	0.60	3.4229	.5697	9291	.9043
36	0.175	4.3809	.4442	5939	.6789	92	0.62	3.4875	.5642	9618	.9091
37	0.18	4.3734	.4417	5867	.6997	93	0.64	3.4904	.5576	9657	.9022
38	0.185	4.4082	.4489	6121	.7173	94	0.66	3.4955	.5495	9699	.8916
39	0.19	4.3462	.4650	6212	.7275	95	0.68	3.5027	.5358	9661	.8849
40	0.195	4.1859	.4869	6070	.7396	96	0.70	3.5081	.5282	9753	.8801
41	0.20	4.0802	.4972	5926	.7505	97	0.72	3.4841	.5316	9878	.8853
42	0.205	3.9833	.5014	5709	.7662	98	0.74	3.4192	.5412	9898	.8856
43	0.21	3.9132	.5050	5552 5604	.7822	99	0.76	3.3057	.5600	9910	.8824
44	0.215	3.9139	.5060	5604	.7983	100	0.78	3.1797	.5795	9901	.8796
45	0.22	3.9324	.5043	5710	.8182	101	0.80	3.0627	.5941	9852	.8818
46	0.225	3.9789	.5042	5956	.8283	102	0.82	2.9928	.5997	9838	.8906
47	0.23	4.0118	.5038	6129	.8333	103	0.84	2.9076	.6067	9810	.9021
48	0.235	4.0855	.4914	6237	.8407	104	0.86	2.7893	.6145	9657	.9128
49 50	0.24	4.0720	.4759	5983	.8523	105	0.88	2.6843	.6192	9518	.9285
50	0.245	4.0418	.4622	5720	.8661	106	0.90	2.5900	.6197	9324	.9389
51	0.25	3.9997	.4676	5730	.8760	107	0.92	2.5120	.6189	9155	.9454
52	0.255	3.9366	.4775	5736	.8848	108	0.94	2.4430	.6140	8930	.9476
53	0.26	3.8973	.4830	5754	.8933	109	0.96	2.3961	.6065	8746	.9505
54	0.265	3.9178	.4804	5848	.8988	110	0.98	2.3424	.6070	8683	.9501
55	0.27	3.9558	.4714	5894	.9025	111	1.00	2.2930	.6145	8772	.9481
56	0.275	3.9786	.4568	5774	.9027	112	1.02	2.2642	.6183	8852	.9483
57	0.28	4.0643	.4363	5779	.9000	113	1.04	2.2348	.6224	8932	.9520
58	0.285	4.0948	.4257	5757	.8987	114	1.06	2.2306	.6245	9071	.9542
						115	1.08	2.2809	.6176	9240	.9558

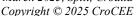


Table 2. Regression coefficients and standard deviation (continued) Mathematical model: $lnSA(T; \xi=0.05) = b_1 + b_2 M + b_3 lnR_h + \sigma_{lnSA}P$

No	Period T (s)	b_I	b_2	b_3	σ_{lnSA}						
116	1.10	2.3080	.6130	9372	.9559	No	Period	b_I	b_2	b_3	σ_{lnSA}
117	1.12	2.2819	.6114	9359	.9576		T (s)				
118	1.14	2.2241	.6140	9321	.9608	170	2.18	.2453	.7574	8710	1.0337
119	1.16	2.1449	.6243	9332	.9677	171	2.20	.2215	.7605	8738	1.0381
120	1.18	2.0273	.6403	9295	.9743	172	2.22	.2003	.7639	8779	1.0424
121	1.20	1.9223	.6560	9286	.9775	173	2.24	.1810	.7670	8825	1.0465
122 123	1.22 1.24	1.8041 1.7032	.6710 .6819	9212 9125	.9797 .9824	174 175	2.26 2.28	.1527 .0926	.7701 .7739	8836 8735	1.0504 1.0541
123	1.24	1.6077	.6916	9123	.9843	175	2.28	.0425	.7739 .7777	8668	1.0541
125	1.28	1.5136	.6986	8885	.9842	170	2.32	.0423	.7803	8622	1.0577
126	1.30	1.4219	.7083	8801	.9808	178	2.34	0277	.7825	8587	1.0628
127	1.32	1.3340	.7184	8743	.9781	179	2.36	0578	.7847	8561	1.0652
128	1.34	1.2590	.7268	8711	.9758	180	2.38	1021	.7866	8477	1.0681
129	1.36	1.2206	.7317	8757	.9725	181	2.40	1466	.7871	8365	1.0712
130	1.38	1.2051	.7343	8852	.9708	182	2.42	1872	.7873	8266	1.0742
131	1.40	1.1966	.7356	8946	.9697	183	2.44	2291	.7879	8168	1.0770
132	1.42	1.1959	.7367	9064	.9673	184	2.46	2686	.7883	8076	1.0797
133	1.44	1.1933	.7369	9145	.9657	185	2.48	2933	.7866	8004	1.0825
134	1.46	1.1741	.7343	9103	.9635	186	2.50	3146	.7842	7932	1.0855
135	1.48	1.1659	.7302	9080	.9630	187	2.52	3346	.7817	7863	1.0885
136	1.50	1.1490	.7271	9046	.9636	188	2.54	3532	.7791	7799	1.0915
137	1.52	1.1462	.7249	9078	.9660	189	2.56	3723	.7768	7734	1.0950
138	1.54	1.1424	.7246	9133	.9675	190	2.58	3887	.7748	7685	1.0982
139	1.56	1.1374	.7245	9180	.9686	191	2.60	4058	.7725	7630	1.1009
140	1.58	1.1304	.7252	9239	.9705	192	2.62	4261	.7708	7571	1.1032
141	1.60	1.1178	.7265	9295	.9731	193	2.64	4349	.7693	7557	1.1053
142	1.62	1.1110	.7291	9394	.9758	194	2.66	4374	.7680	7570	1.1075
143	1.64	1.1098	.7320	9519	.9793	195	2.68	4353	.7663	7596	1.1099
144	1.66	1.1065	.7357	9646	.9823	196	2.70	4322	.7648	7626	1.1126
145 146	1.68	1.1035 1.0976	.7389 .7395	9764 9822	.9843 .9844	197	2.72	4291	.7629	7650	1.1145
140	1.70 1.72	1.0576	.7405	9822 9768	.9856	198	2.74	4403	.7614	7628	1.1174
148	1.74	1.0392	.7415	9703	.9877	199	2.76	4432	.7598	7634	1.1201
149	1.74	.9811	.7428	9672	.9895	200	2.78	4350	.7576	7670	1.1228
150	1.78	.9537	.7434	9659	.9912	201 202	2.80 2.82	4182 3993	.7548 .7516	7728 7783	1.1255 1.1271
151	1.80	.9339	.7429	9655	.9930	202	2.82	3993 3711	.7316	77872	1.1271
152	1.82	.9040	.7412	9584	.9941	203	2.86	3426	.7446	7872 7946	1.1287
153	1.84	.8288	.7417	9385	.9948	204	2.88	3148	.7440	8006	1.1298
154	1.86	.7631	.7421	9226	.9961	206	2.90	2917	.7362	8064	1.1315
155	1.88	.6965	.7424	9062	.9975	207	2.92	2599	.7335	8166	1.1324
156	1.90	.6310	.7405	8860	.9982	208	2.94	2528	.7315	8193	1.1331
157	1.92	.5729	.7364	8643	.9983	209	2.96	2509	.7298	8204	1.1332
158	1.94	.5284	.7343	8507	.9993	210	2.98	2503	.7277	8208	1.1331
159	1.96	.4790	.7331	8368	1.0006	211	3.00	2567	.7260	8187	1.1337
160	1.98	.4279	.7338	8258	1.0020	212	3.20	3686	.7043	7761	1.1292
161	2.00	.3951	.7339	8207	1.0037	213	3.40	2705	.6734	8006	1.1138
162	2.02	.3772	.7353	8235	1.0049	214	3.60	2057	.6410	8020	1.1002
163	2.04	.3699	.7373	8317	1.0068	215	3.80	0447	.6049	8275	1.1001
164	2.06	.3677	.7394	8423	1.0092	216	4.00	1111	.5950	8121	1.1055
165	2.08	.3620	.7422	8527	1.0122	217	4.20	0850	.5783	8190	1.0977
166	2.10	.3404	.7463	8594 8610	1.0158	218	4.40	2000	.5736	7923	1.0896
167 168	2.12 2.14	.3072 .2787	.7501 .7527	8610 8620	1.0199 1.0244	219	4.60	1900	.5528	7802	1.0899
169	2.14	.2787	.7553	8620 8657	1.0244	220	4.80	1139	.5301	7903	1.0940
109	2.10	.2303	.1333	0057	1.0200	221	5.00	0591	.5034	7886	1.0927

4. References

- [1] Akkar S., Cagnan Z. (2010): A Local Ground-Motion Predictive Model for Turkey and Its Comparison with Regional and Global Ground Motion-Models. BSSA, Vol. 100, No.6. pp. 2978-2995, December 2010. doi: 10.1785/0120090367
- [2] Douglas et al. (2011): Ground Motion Prediction Equations 1964-2010 (and its upgrading up to 2018). PEER Report 2011/102 Pacific Earthquake Engineering Research Center, Collage of Engineering, Berkeley, California.
- [3] Douglas J. (2019): Ground Motion Prediction Equations (1964-2019). Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK.
- EUROCODE 8: Design Provisions for Earthquake Resistance of Structures, Seismic Actions [4] and General Requirements for Structures, [2004] EN 1998-1:2004, Stage 51, May 2004.
- [5] EUROCODE 8: Design Provisions for Earthquake Resistance of Structures, Part 2-Bridges, [2005] EN 1998-2:2005, December 2005.
- Sedaghati, F., M.EERI¹ and Shahram P., M. EERI², sagepub.com/journals-permisssions DOI: 10.1177/87552930231191759 journals.sagepub.com/home/eqs (2023). Machine [6] Learning - Based Ground Motion Models for Shallow Crustal Earthquakes in Active Tectonic Regions.
- Pacor F., Spallarossa D., Oth A., Luzi A., Puglisa R., Cantore L., Mecuri A., D'Amico M., [7] Bindi D. (2016): Spectral Models for Ground Motion Prediction in the L'Aquila Region. Geophysical Journal International, Volume 204, Issue 2, February 2016, Pages 697-718, http://doi.org/10.1093/gji/ggv448
- Stamatovska S. (1988): Probability Response of SDFS Exposed to Seismic Loads. Master [8] Thesis (in Macedonian), Institute of Earthquake Engineering and Engineering Seismology, "Ss. Cyril and Methodious" University, Skopje, R. of Macedonia, 1988.
- [9] Stamatovska S. (2001): Design Response Spectra-Deterministic and Probabilistic Approach. Albanian Journal of Natural & Technical Science (AJNTS), No.10/2001, pp. 113-123.
- Stamatovska S., Paskalov A., Petrovski D., Hadzievski D. (2003). Ground Motion Models, [10] Institute of Earthquake Engineering and Engineering Seismology, "Ss. Cyril and Methodius" University, Skopje, Republic of Macedonia, *Report IZIIS-2003-19*, March 2003 (in Macedonian).
- Stamatovska S. (2003): Design Response Spectra for a Rock Site in the City of Skopje. [11] International Conference on Earthquake Engineering to Mark 40 Years from Catastrophic 1963 Skopje Earthquake and Successful City Reconstruction, Skopje-Ohrid, R. of Macedonia, 26-29 August 2003. Reference: CD: SE-40EEE, 0155.pdf.
- Stamatovska S. (2008): Ground Motion Models for Local Earthquakes. Proceedings, Volume [12] 1, Second International Meeting Civil Engineering - Science and Practice (GNP2008), Zabljak, 03-07 March 2008, pp.469-474 (In Serbian)
- Stamatovska S. (2008): Evaluation of Seismic Design Parameters of Structures of the HPP [13] Kozjak - ICOLD Method, IZIIS Report 2008 - 67/2, November 2008, Skopje, R. Macedonia (in Macedonian)
- Stamatovska S. (2010): Gas Power Plant 'Skopje-East' Seismic Design Parameters. 3th [14] International Conference - GNP2010. Zabljak, 15-19 February, 2010. Proceedings, Volume 1, pp.553–558.
- Stamatovska S. (2010): Seismic Design Parameters for Large Dams –ICOLD Method. 14th [15] ECEE, Ohrid, August 30-September 3, 2010, Republic of Macedonia. Paper No. 1826.

- [16] Stamatovska S. (2010): Local Soil Response to Seismic Input Compatible to Uniform Hazard Spectra at Bedrock. *Journal of Acta Geodaetica et Geophisica Hungarica*, Volume 45, Number 3, September 2010, pp.273-283. (DOI: 10.1556/AGeog.45.2010.3.2).
- [17] Sesov V., Stamatovska S., Aleksovski D., Zafirova I., Gadza V., Gjorgjeska I. (2010). Evaluation of Seismic Potential of a Site for Preliminary Project on the Ohrid Airport. UKIM-IZIIS, *Report IZIIS 2010-33*, Skopje, May 2010.
- [18] Stamatovska S., Sesov V. (2011): "St. Paul the Apostle" Airport in Ohrid Assessment of Seismic Potential of the Site. *15th International Symposium of MASE (MASE -15)*. Struga, Macedonia 18-21 September 2013.
- [19] Mirakovski G., Stamatovska S., Micajkov S., Aleksovski D., Mircevska V., Zafirova I., Gadza V., Filipovski D., Markovski I. (2011): Geological and Seismogeological Bases for the General Urban Plan of the Wider Urban Area of Skopje City. UKIM-IZIIS, *Report IZIIS* 2011-31, June 2011.
- [20] Mirakovski G., Stamatovska S. (2012): Seismic Zoning of the Skopje City Urban Area Using Tomographic Concept. *15thWCEE*, Lisboa, Portugal, 2012. Paper: WCEE2012_1889.pdf
- [21] Stamatovska S. (2012): Urban Area Microzonation as Prevention in Managing Earthquake Risk. *Journal of Frontiers in Geotechnical Engineering (FGE)*, Volume 1 Issue 1, December 2012. (Online 2012-12), pp. 9-18. www.seipub.org/fge/
- [22] Stamatovska S. (2012): Seismic Parameters of Seismic Base of the Location of Antenna Tower on Vodno Mountain. UKIM-IZIIS, *Report IZIIS 2012-44*, October 2012.
- [23] Sesov V., Stamatovska S., Gjorgjeska I., Jovanovski Gj. (2012): Definition of Seismic Design Parameters Structure State institutions ELEM, Makedonija Str. bb Skopje. UKIM-IZIIS, *Report IZIIS 2012-46*, August 2012.
- [24] Uniform Building Code, Volume 2, Division IV, Earthquake Design, 1997. Published regulation of design, A WORLD List -1996, Supplement 2000.

Acknowledgement

The author expresses her gratitude to the Ministry of Education and Science of the Republic of North Macedonia for the financial support to the scientific-research project: **Ground Motion Models.**